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Abstract

Rooted phylogenetic networks are used to model non-treelike evolutionary

histories. Such networks are often constructed by combining trees, clusters,

triplets or characters into a single network that in some well-defined sense

simultaneously represents them all. We review these four models and inves-

tigate how they are related. Motivated by the parsimony principle, one often

aims to construct a network that contains as few reticulations (non-treelike

evolutionary events) as possible. In general, the model chosen influences

the minimum number of reticulation events required. However, when one

obtains the input data from two binary (i.e. fully resolved) trees, we show
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that the minimum number of reticulations is independent of the model. The

number of reticulations necessary to represent the trees, triplets, clusters (in

the softwired sense) and characters (with unrestricted multiple crossover re-

combination) are all equal. Furthermore, we show that these results also

hold when not the number of reticulations but the level of the constructed

network is minimised. We use these unification results to settle several com-

putational complexity questions that have been open in the field for some

time. We also give explicit examples to show that already for data obtained

from three binary trees the models begin to diverge.

Keywords: Reticulation, phylogenetic network, cluster, triplet, character.

1. Introduction

One of the main challenges in phylogenetics is to reconstruct evolutionary

histories from biological data of currently living organisms. The traditional

and most widely-used model for representing evolutionary histories is the

phylogenetic tree. However, recent years have seen more and more interest in

the generalisation of phylogenetic trees to phylogenetic networks, which can

model non-treelike evolution. These phylogenetic networks contain special

nodes, called reticulations, in which previously diverged lineages recombine.

These nodes represent “reticulate” evolutionary phenomena such as hybridis-

ation, recombination or lateral (horizontal) gene transfer. For a full overview

of theory and methods concerning phylogenetic networks, see [1–3].

Motivated by the parsimony principle, a phylogenetic network with fewer

reticulations is often preferred over a network with more reticulations, when
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both networks represent the available data equally well. Alternatively, one

can aim to minimise the “level” of the constructed network, i.e. the number

of reticulations per tangled part of the network, see Figure 1. Thus, it is

interesting to compute the minimum number of reticulations, or alternatively

the minimum level, necessary to represent certain data by a phylogenetic

network.

How these minima depend on the chosen model is still very poorly under-

stood. Many algorithms and software packages (see [1–3] and the overview

we give in Section 2) are available for many different models, but how these

models are related, and whether they are essentially different, often remains

undiscussed. This article illuminates the relation between several such mod-

els. The special case of an input consisting of two phylogenetic trees has been

discussed repeatedly in different contexts [4–10]. We take a closer look at

this special case and show that it is indeed very special: three fundamentally

different models turn out to be, in this special case, equivalent.

Figure 1: A phylogenetic network with four reticulations (grey, unfilled vertices). This is

a level-3 network, because the tangled parts (encircled) contain at most three reticulations

each.
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We focus on four models for the construction of phylogenetic networks.

Probably the most natural one is the “tree-model” which aims at combining

several phylogenetic trees into a single phylogenetic network that precisely

displays each of the trees; e.g., see [11]. This is especially interesting when

certain parts of the genome (e.g. genes) are known to have evolved in a

tree-like fashion. One can then generate a phylogenetic tree for each tree-like

part of the genome separately, and combine them into a phylogenetic network

that represents each of the trees.

Another model is to extract a set of triplets (phylogenetic trees with three

taxa each) and to combine them into a phylogenetic network that represents

each of the triplets; e.g., see [12]. Triplets can be constructed in two ways.

Firstly, one can use any of the methods for constructing phylogenetic trees

for some or all combinations of three taxa (using a fourth taxon as an out-

group in order to root the triplet). Alternatively, one can first construct

one or more phylogenetic trees (on all taxa) and subsequently find the set of

triplets that are contained in these trees. The main motivation for the latter

approach is that representing all triplets might require fewer reticulations

than representing the entire trees. In Section 3.3, we indeed give an explicit

example of three trees for which the triplets in the trees can be represented

with fewer reticulations than necessary to represent the trees themselves. On

the other hand, this section also shows that, for two fully resolved trees, the

numbers of reticulations needed to represent the trees or the triplets in the

trees are always the same. Moreover, these results also hold when the level

rather than the total number of reticulations is minimised.
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A third model extracts a set of clusters and combines those into a phylo-

genetic network; e.g., see [8]. Clusters can be obtained from morphological

data or from phylogenetic trees. The latter approach has a similar motivation

as in the triplet-model. The clusters from the trees might be representable

using fewer reticulations than that would be necessary to represent the trees

themselves. In addition, the clusters described by a phylogenetic tree are

biologically the most interesting features of the tree, because they describe

putative monophyletic groups of species (also called clades). In Section 3.2,

we show that clusters are in some sense ‘between’ triplets and trees. The

number of reticulations required by the triplets is always less than or equal

to the number of reticulations required by the clusters, and this latter num-

ber is in turn less than or equal to the number of reticulations required to

represent the trees themselves. In Section 3.3, we give examples of sets of

three trees for which these inequalities are strict. However, in this section

we also show that, for two fully resolved trees, the number of reticulations

needed to represent the clusters is always equal to the number of reticula-

tions needed to represent the triplets or trees. We again show that all these

results also hold when the level rather than the total number of reticulations

is minimised.

The last model we consider in this article constructs phylogenetic net-

works from binary characters. This kind of data consists of a matrix of 0s

and 1s and can for example be constructed from DNA, morphological data

or phylogenetic trees. Binary characters have been well studied in the field

of population genetics [13]. In Section 3.1, we clarify the relation between

this model and the cluster model mentioned above, to put our main results
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in the correct context.

The structure of the remainder of this article is as follows. The next

section describes the mathematical models in detail, gives an overview of

known results for each model, and summarises our results. In Section 3 we

prove our unification results and in Section 4 we use these results to prove

several computational complexity results. We end the article in Section 5

with some concluding remarks.

2. Mathematical Models and Summary of Results

2.1. Phylogenetic Networks

Consider a set of taxa X . A rooted phylogenetic network on X is a directed

acyclic graph with exactly one vertex with indegree-zero (the root) in which

the outdegree-zero nodes (the leaves) are bijectively labelled by X . It is

common to identify a leaf with the taxon it is labelled by and it is usually

assumed that there are no nodes with indegree and outdegree one; we adopt

both conventions. Nodes with indegree at least two are called reticulations.

The edges entering a reticulation are called reticulation edges. Nodes that

are not reticulations are called tree nodes. A phylogenetic network is called

binary (or fully resolved) if all reticulations have indegree two and outdegree

one and all other nodes have outdegree zero or two. In this article we only

consider rooted (as opposed to unrooted) phylogenetic networks and for this

reason we henceforth omit the prefix “rooted”.

As mentioned before, we are interested in minimizing either the number
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of reticulation events or the level of the constructed network. The following

subtlety has to be taken into account when reticulations with indegree higher

than two are considered. When counting such reticulations, indegree-d retic-

ulations are counted d − 1 times, because such reticulations represent d − 1

reticulate evolutionary events (of which the order is not specified). Hence,

using δ−(v) to denote the indegree of a node v, we formally define the number

of reticulations in a phylogenetic network N = (V, E) as

∑

v∈V :δ−(v)>0

(δ−(v) − 1) = |E| − |V | + 1 .

Thus, we define the following fundamental problem MinRet. Given some

data describing some taxa, find a phylogenetic network that “represents” the

given data and contains a minimum number of reticulations over all phylo-

genetic networks that represent the given data. We consider three specific

variants of this problem: MinRetTrees, MinRetTriplets and MinRet-

Clusters, for data consisting of trees, triplets and clusters respectively.

Let us now formally define the level of a phylogenetic network. A bicon-

nected component is a maximal subgraph that cannot be disconnected by

removing a single node. A biconnected component is trivial if it is equal to

a single edge and nontrivial otherwise. For k ∈ N, a phylogenetic network is

called a level -k network if each nontrivial biconnected component contains at

most k reticulations. See Figure 1 for an example of a phylogenetic network

with four reticulations. The grey, unfilled vertices are reticulations and the

grey edges are reticulation-edges. This is a level-3 network, because the non-

trivial biconnected components (encircled by dashed lines) contain at most
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three reticulations each.

We are now ready to define the following MinLev variant of the fun-

damental problem. Given some data describing some taxa, find a level-k

phylogenetic network that “represents” the given data such that k is as

small as possible. There are again three versions: MinLevTrees, Min-

LevTriplets and MinLevClusters, for data consisting of trees, triplets

and clusters respectively.

The following four subsections take a more detailed look at the four pos-

sible types of input data: trees, triplets, clusters and binary characters.

Throughout the paper we assume a fixed set X of taxa.

2.2. Trees

A rooted (binary) phylogenetic tree on X is a rooted (binary) phylogenetic

network on X without reticulations. We only consider rooted trees and thus

omit the prefix “rooted”. A phylogenetic tree T is displayed by a phylogenetic

network N if T can be obtained from some subtree of N by suppressing nodes

with indegree one and outdegree one (i.e. if some subtree of N is a subdivision

of T ). See Figure 2 for an example.

For a set T of phylogenetic trees on X , we define:

• rt(T ) as the minimum number of reticulations in any phylogenetic net-

work on X that displays each tree in T and

• ℓt(T ) as the minimum k such that there exists a level-k phylogenetic
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Figure 2: A phylogenetic tree T (a) and a phylogenetic network N (b,c,d); (b) illustrates

in grey that N displays T (edges not in the subdivision are dashed); (c) illustrates that N

is consistent with the triplet cd|f from T (edges not in the embedding are again dashed);

(d) illustrates that N represents cluster {c, d, e} from T in the softwired sense (dashed

reticulation edges are “switched off”).

network on X that displays each tree in T .

The computation of rt has received much attention in the literature. For

two binary trees on the same taxon set the problem is NP-hard and APX-

hard [6] although on the positive side it is fixed-parameter tractable in rt

[4, 5]; [3] offers a good overview of these and related results. These algo-

rithmic insights have been translated into the software HybridNumber [4]

and its more advanced successor HybridInterleave [7]. These programs

compute rt exactly for two binary trees on the same taxon set. The program

SPRDist [10] solves the same problem (using integer linear programming)

and the program PIRN [14] can compute lower and upper bounds on rt for

any number of binary trees on the same taxon set. In [15] a polynomial-

time algorithm is described that constructs a level-1 phylogenetic network

that displays all trees and has a minimum number of reticulations, if such a

network exists.
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2.3. Triplets

A (rooted) triplet on X is a rooted binary phylogenetic tree on a size-3

subset of X . As with networks and trees we drop the prefix “rooted”, as-

suming that it is implicit. We use xy|z to denote the triplet with taxa x, y

on one side of the root and z on the other side of the root. For triplets,

the notion of “represent” can be formalised by the notion of “display” intro-

duced above. However, for triplets “consistent with” is often used instead of

“displayed by”. A triplet xy|z is consistent with a phylogenetic network N

(and N is consistent with xy|z) if xy|z is displayed by N . See Figure 2 for

an example. Given a phylogenetic tree T on X , we let Tr(T ) denote the

set of all triplets on X that are consistent with T . For a set of phylogenetic

trees T , we let Tr(T ) denote the set of all triplets that are consistent with

some tree in T , i.e. Tr(T ) =
⋃

T∈T Tr(T ).

For a set R of triplets on X , we define:

• rtr(R) as the minimum number of reticulations in any phylogenetic

network on X that is consistent with each triplet in R and

• ℓtr(R) as the minimum k such that there exists a level-k phylogenetic

network on X that is consistent with each triplet in R.

Throughout the article we will write rtr(T ) and ℓtr(T ) as abbreviations

for rtr(Tr(T )) and ℓtr(Tr(T )) respectively.

A triplet set R on X is said to be dense when, for every three distinct

taxa x, y, z ∈ X , at least one of xy|z, xz|y, yz|x is in R [16]. Given a dense
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triplet set, [16, 17] describe a polynomial-time algorithm that constructs a

level-1 network displaying all triplets, if such a network exists. The algorithm

in [18] can be used to find such a network that also minimizes the number

of reticulations, and this is available as the program Marlon [19]. These

results have later been extended to level-2 [18, 20] (see also the program

Level2 [21]) and more recently to level-k, for all k ∈ N [22]. The program

Simplistic [18, 23] can be used to construct (simple) networks of arbitrary

level (again, assuming density).

2.4. Clusters

A cluster on X is a proper subset of X . We use Cl(T ) to denote the set of

clusters of a phylogenetic tree T , i.e. for each edge (u, v) of T , the set Cl(T )

contains a cluster consisting of precisely those taxa that are reachable by a

directed path from v. For a set T of phylogenetic trees, we define Cl(T ) =
⋃

T∈T Cl(T ).

Similar to tree- and triplet methods, the general aim of cluster methods

is to construct a phylogenetic network that “represents” some set of input

clusters. There are two different notions of “representing” for clusters: the

“hardwired” and the “softwired” sense. Given a cluster C ⊂ X and a phylo-

genetic network N on X , we say that N represents C in the hardwired sense

if there exists an edge (u, v) in N such that C is the set of taxa reachable

from v by a directed path [24].

The definition of “representing” in the “softwired sense” is longer but

biologically more relevant. We say that N represents C in the softwired sense

11



if there exists an edge (u, v) in N such that C is the set of taxa reachable

from v by a directed path, when for each reticulation r exactly one of its

incoming edges is “switched on” and all other edges entering r are “switched

off” (see Figure 2). As a direct consequence, C is represented by N in the

softwired sense if and only if there exists a phylogenetic tree T on X that is

displayed by N and has C ∈ Cl(T ). In this article, we do not consider cluster

representation in the hardwired sense and therefore often write “represents”

as short for “represents in the softwired sense”.

For a set of clusters C on X , we define:

• rc(C) as the minimum number of reticulations in any phylogenetic net-

work on X that represents all clusters in C in the softwired sense and

• ℓc(C) as the minimum k such that there exists a level-k phylogenetic

network on X that represents all clusters in C in the softwired sense.

We write rc(T ) as shorthand for rc(Cl(T )) and ℓc(T ) as shorthand for

ℓc(Cl(T )).

A network is a galled network if it contains no path between two reticu-

lations that is contained in a single biconnected component. In [25] and [8]

an algorithm is described for constructing a galled network representing C in

the softwired sense. In [9] the algorithm Cass [26] is presented which aims

at constructing a low-level network that represents C. Cass always returns a

network representing all input clusters and, when ℓc(C) ≤ 2, it is guaranteed

to compute ℓc exactly. Alongside the algorithms from [8, 24, 25], Cass is

12



available as part of the program Dendroscope [27].

2.5. Binary character data

Within the field of population genomics the literature on phylogenetic

networks has evolved along a slightly different route to the literature on

trees, triplets and clusters. At the level of populations the principle reticu-

lation event is recombination, and in this context phylogenetic networks are

sometimes called recombination networks. To avoid repetition we refer to

[28–30] for background and formal definitions; as in those articles we con-

sider exclusively the “infinite sites” model where character data is assumed

to be binary and where each character mutates at most once. We further-

more assume that the root sequence is the all-0 sequence i.e. we are dealing

with the “root known” variant of the problem. The input is a binary n × m

matrix M .

The basic definition given in [29] is for the unrestricted multiple crossover

variant of the recombination network model. Stated informally this means

that, at each reticulation, each character can freely “choose” from which of

its parents it inherits its value. This is quite different to the single crossover

variant which has received far more attention in the literature. In the single

crossover variant the sequence at a reticulation is forced to obtain a prefix

from one of its parents, and a suffix from the other, thus modelling chromo-

somal crossover. In both variants tree nodes behave the same: each character

at a tree node v inherits its value from its parent, unless the character mu-

tated along the edge entering v, in which case it takes the opposite value
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Figure 3: A recombination network that represents the binary character data given at the

leaves under the unrestricted multiple crossover model. A label i on an edge indicates that

character i mutated along that edge. The network does not represent the character data

under the single crossover model, because 1010 can not be obtained by combining a prefix

of 1000 with a suffix of 0011 or vice versa.

to its parent. (When the root is the all-0 sequence then this mutation will

always be from 0 to 1).

See Figure 3 for an example recombination network that represents given

binary character data under the unrestricted multiple crossover variant, but

not under the single crossover variant.

For a binary matrix M , we define:

• rsc(M) as the minimum number of reticulations required by a recombi-

nation network that represents M , assuming the single crossover variant

and an all-0 root, and

• ruc(M) as the minimum number of reticulations required by a recombi-
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nation network that represents M , assuming the unrestrained multiple

crossover variant and an all-0 root.

Given that the latter is a relaxation of the former, it is immediately clear

that for any input M ,

ruc(M) ≤ rsc(M). (1)

In [31] it was claimed that it is NP-hard to compute ruc. However, [6] subse-

quently discovered that the proof in [31] was partially incorrect and modified

it to prove that computation of rsc is NP-hard.

There are some definitional subtleties when trying to map between the

model of [29] and the other models summarised in this article. Some dif-

ferences between the models are rather arbitrary and minor and thus easy

to overcome, and we do not discuss them here. In this article we restrict

ourself to a more fundamental comparison concerning (under an appropriate

transformation) the values rsc(M), ruc(M) and rc(C).

The problem of computing rsc (in defiance of its NP-hardness) has at-

tracted much attention. Articles such as [13, 28–30, 32] give a good overview

of the methods in use. Much energy has been invested in computing lower

bounds for rsc (e.g. the program HapBound [13]), and some lower bounding

techniques also produce valid lower bounds for ruc (e.g. [29]). Programs such

as Shrub [13] produce upper bounds on rsc, and Beagle [32] uses integer

linear programming to compute rsc exactly (for small instances). The pro-

grams HapBound-GC and Shrub-GC compute lower and upper bounds

on a value that lies somewhere between rsc and ruc [33]. As in other ar-
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eas of the phylogenetic network literature the problem of computing rsc in a

topologically constrained space of networks [34] has also been considered.

2.6. Summary of Results

In this article, we study how several methods for constructing phyloge-

netic networks are related. We begin by clarifying the relationship between

phylogenetic networks that represent clusters in the softwired sense and re-

combination networks that represent binary character data. We explain that

the two models are equivalent when unrestricted multiple crossover recom-

bination is considered but fundamentally different when single crossover re-

combination is used. This clarification is necessary to place the main results

from this article in the correct context.

We then turn to the problem of constructing phylogenetic networks from

trees, triplets or clusters. In particular, we focus on triplets and clusters

obtained from a set of trees on the same set of taxa. We show that the

number of reticulations required to display the triplets is always less than or

equal to the number of reticulations necessary to represent all clusters, and

the latter number is in turn less than or equal to the number of reticulations

necessary to display the trees themselves:

rtr(T ) ≤ rc(T ) ≤ rt(T ) .

We give examples for which these inequalities are strict i.e. an example

in which the triplets need strictly fewer reticulations than the clusters and
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an example in which the clusters need strictly fewer reticulations than the

trees.

However, the main result of this article shows that, when one considers

a set T containing two binary trees on the same set of taxa, the numbers of

reticulations required to represent the triplets, clusters or the trees themselves

are all equal:

rtr(T ) = rc(T ) = rt(T ) .

In addition, all the results above also hold for minimizing level. In par-

ticular:

ℓtr(T ) = ℓc(T ) = ℓt(T ) .

These unification results turn out to have important consequences. We

use the equalities above to settle several complexity questions that have been

open for some time and to strengthen several existing complexity results. In

particular, we show that computation of ℓt(T ), rc(T ), ℓc(T ), rtr(T ) and

ℓtr(T ) are all NP-hard and APX-hard even when T consists of two binary

trees on the same set of taxa. Thus, problems MinRetTriplets, MinRet-

Clusters, MinLevTrees, MinLevTriplets and MinLevClusters are

all NP-hard and APX-hard (which was already known for MinRetTrees [6]).
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3. Spot the difference

3.1. Clusters and binary character data

Let C be a set of clusters on X . Let X = {x1, ..., xn} and C = {c1, ..., cm}

i.e. impose an arbitrary ordering on X and C. The matrix encoding of C is a

binary matrix Mat(C) with n rows and m columns. Mat(C)i,j has the value

1 if and only if cj contains taxon xi. It is also natural to define the “dual”

encoding. Given an n × m binary matrix M , the cluster encoding of M is

a cluster set Clus(M) containing a set of m clusters {c1, ..., cm} on taxon

set {x1, ..., xn} such that cj contains xi if and only Mi,j has value 1. Clearly

both encodings can be produced in polynomial time.

The following result was presented in [35] and is to some extent implicit in

[36] (and thus should be attributed to these two groups of authors) although

to the best of our knowledge has never been formally written down. It shows

that in a very strong sense the construction of phylogenetic networks from

clusters, and recombination networks from binary characters under the all-0

root, unrestricted multiple crossover variant, are equivalent.

Observation 1. Given a cluster set C, any phylogenetic network N that rep-

resents C can be relabelled (after possibly a trivial modification) to obtain a

recombination network that represents Mat(C) under the unrestricted multi-

ple crossover variant with all-0 root. Given a binary matrix M , any recombi-

nation network that represents M under the unrestricted multiple crossover

variant with all-0 root can be relabelled (after possibly a trivial modification)

to obtain a phylogenetic network that represents Clus(M).
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Proof. The core idea is that the edges which represent clusters will become

the edges upon which mutations from 0 to 1 will occur, and vice-versa. We

will now formalise this.

Consider first a cluster set C = {c1, ..., cm} and a phylogenetic network

N that represents it. If necessary we first modify N slightly to ensure that

every reticulation has outdegree exactly 1. Now, for each cluster cj ∈ C there

exists some tree Tj on X that is displayed by N and which represents cj . To

obtain the recombination network for Mat(C) we relabel as follows: the root

of N receives the all-0 sequence and for each cj (1 ≤ j ≤ m) we locate the

edge ej in Tj that represents cj, and fix some subdivision of Tj in N . The

edge ej will thus correspond to a directed path of edges in N ; we arbitrarily

choose one edge from this path as the edge at which character j mutates

from 0 to 1. (We can assume without loss of generality that this is not a

reticulation edge). For each node v in N we say that character j has value 1

if and only if v lies in the subdivision of Tj that we fixed and the node v′ in

Tj to which it corresponds is reachable in Tj from ej by a directed path. In

particular, each character at a reticulation v inherits its value from the node

immediately preceding v in the subdivision.

Given an n × m binary matrix M and a recombination network N that

represents it under the unrestricted multiple crossover variant with all-0 root,

we first ensure that reticulations in N with outdegree 0 are modified to have

outdegree exactly 1. We can thus assume without loss of generality that

mutations do not occur on reticulation edges: the mutation can be moved

if necessary to the edge leaving the reticulation. Now, we can relabel N
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as follows. The leaf labelled with row i of M is mapped to taxon xi of X .

Now, recall that the jth column of M corresponds to cluster cj ∈ Clus(M).

Consider any such j. At every node v in N it is either (i) unambiguous

from which parent of v the value of character j was inherited, or (ii) it is

ambiguous, in which case we can arbitrarily choose any such parent, or (iii)

character j mutates from a 0 to 1 on the edge feeding into v, in which case

choose that edge. This induces a tree which will be a subdivision of some

tree Tj on X . Furthermore, Tj represents cj, and we are done. �

Corollary 1. Given a cluster set C, rc(C) = ruc(Mat(C)). Given a binary

matrix M , ruc(M) = rc(Clus(M)).

It is natural to wonder whether the single crossover variant is genuinely more

restrictive than the unrestrained multiple crossover variant. Could it be, for

example, that the columns of an input matrix M can always be re-ordered

to obtain a matrix M ′ such that rsc(M
′) = ruc(M)? This is not so, as the

following simple example shows. We observe firstly that for a cluster set C

on a set of taxa X , rc(C) ≤ |X | − 1. This follows because we can use the

construction depicted in Figure 4. Let, n = |X |. For any n ≥ 5, we let Cn

be the set of all clusters that contain exactly ⌊n/2 + 1⌋ elements of X . Let

M = Mat(Cn). It follows by Observation 1 that ruc(M) = rc(Clus(M)) =

rc(Cn) ≤ n − 1.

Clearly M has k =
(

n
⌊n/2+1⌋

)

columns and k grows exponentially in n. Let

M ′ be obtained from M by arbitrarily permuting its columns. We say that

two clusters C1, C2 ⊂ X are compatible if either C1 ∩ C2 = ∅ or C1 ⊂ C2
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Figure 4: A network that is consistent with all 3
(

n

3

)

triplets and represents all 2n − 1

clusters on taxon set X = {x1, ..., xn}.

or C2 ⊂ C1 and incompatible otherwise. Note that any adjacent pair of

columns in M ′ fails the three-gamete test [29] (with respect to the all-0 root)

because two distinct clusters containing ⌊n/2 + 1⌋ elements are necessarily

incompatible. Hence, if we partition the columns of M ′ into ⌊k/2⌋ disjoint

pairs of adjacent columns, and apply a composite haplotype bound (i.e. apply

the haplotype bound independently to each disjoint pair of columns) [13][37],

it follows that rsc(M
′) ≥ ⌊k/2⌋. This lower bound grows exponentially in

n, independently of the exact column permutation applied, while the upper

bound on ruc(M) grows only linearly. For n ≥ 5, the gap between these

bounds is already greater than zero.

We remark in passing that the “root unknown” version of the unrestrained

multiple crossover variant (let us denote this by r∗uc) has an interesting in-
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terpretation when given Mat(C) as input. In the “root unknown” version

characters are allowed to start with value 1 at the root and mutate at most

once to 0 (as opposed to always starting with value 0 at the root and mutating

at most once to 1). It follows then that r∗uc(Mat(C)) is the minimum number

of reticulations ranging over all networks that, for each cluster c ∈ C, repre-

sents c or the complementary cluster |X |\c. It is easy to see that r∗uc(Mat(C))

can be significantly smaller than ruc(Mat(C)). For example, consider the set

C of all size-2 clusters on a size-3 taxon set X . These clusters are mutually

incompatible, so ruc(Mat(C)) ≥ 1. However, the complement of each cluster

is a singleton cluster, so (by choosing the all-1 root) r∗uc(Mat(C)) = 0.

3.2. Clusters and triplets coming from trees

Let us take a closer look at sets of triplets or clusters that are obtained

from a set T of (not necessarily binary) phylogenetic trees on the same set

of taxa. We will show that any phylogenetic network that represents Cl(T )

is consistent with Tr(T ). It follows that representing all triplets requires

at most as many reticulations as representing all clusters. Moreover, quite

obviously, representing all clusters requires at most as many reticulations as

representing the trees themselves. Thus,

rtr(T ) ≤ rc(T ) ≤ rt(T ) . (2)

Furthermore, this is true not only with respect to minimizing the number

of reticulations, but with respect to minimizing any property of the networks,
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e.g. level:

ℓtr(T ) ≤ ℓc(T ) ≤ ℓt(T ) . (3)

We will show that each of the inequalities in (2) and (3) is strict for some

set of trees T .

First, in order to prove (2) and (3), we show an important relation be-

tween Tr(T ) and Cl(T ).

Lemma 1. For any three taxa x, y, z ∈ X holds that xy|z ∈ Tr(T ) if and

only if there exists a cluster C ∈ Cl(T ) with x, y ∈ C and z /∈ C.

Proof. First suppose that there is a cluster C ∈ Cl(T ) such that x, y ∈ C

and z /∈ C. Then the triplet xy|z is consistent with T and hence xy|z ∈

Tr(T ).

Now suppose that xy|z ∈ Tr(T ). Then the triplet xy|z is displayed by T

and hence there is a subtree T ′ of T such that xy|z can be obtained from T ′

by suppressing nodes with indegree one and outdegree one. This subtree T ′

contains exactly one node with indegree one and outdegree two. Let C be the

set of taxa reachable from this node. Then, x, y ∈ C, z /∈ C and C ∈ Cl(T ).

�

It follows that, for any set T of trees on the same set X of taxa, Cl(T )

uniquely determines Tr(T ).
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We will now prove the following proposition, from which correctness of (2)

and (3) follows.

Proposition 1. For any set T of trees on the same set X of taxa, any

phylogenetic network on X representing Cl(T ) is consistent with Tr(T ).

Proof. Let N be a phylogenetic network on X representing Cl(T ). Con-

sider a triplet xy|z ∈ Tr(T ). By Lemma 1, there is a cluster C ∈ Cl(T )

(for some T ∈ T ) with x, y ∈ C and z /∈ C. Cluster C is represented by N

(in the softwired sense) and hence there exists a phylogenetic tree TC on X

that is displayed by N and has C ∈ Cl(TC). Because x, y ∈ C and z /∈ C, it

follows that xy|z is displayed by TC . Since TC is displayed by N , it follows

that xy|z is displayed by N . Hence, N is consistent with xy|z. �

Before proceeding further, the following two lemmas will be of use through-

out the rest of the article.

Lemma 2. Let N be a phylogenetic network on X . Then we can transform

N into a binary phylogenetic network N ′ such that N ′ has the same number

of reticulations and the same level as N and any binary tree displayed by N

is also displayed by N ′.

Proof. Each reticulation v with outdegree 0, which is necessarily labelled

by some taxon x ∈ X , is transformed into a reticulation with outdegree 1

by introducing a new node v′, adding an edge (v, v′) and moving label x to
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node v′. Next we deal with nodes v that have both indegree and outdegree

greater than 1. Here we replace the node v by an edge (v1, v2) such that

the edges incoming to v now enter v1, and the edges outgoing from v now

exit from v2. Subsequently nodes with indegree at most 1, and outdegree

d ≥ 3, can be replaced by a chain of (d− 1) nodes of indegree at most 1 and

outdegree 2. Nodes with indegree d ≥ 3 and outdegree 1 can be replaced by

a chain of (d − 1) nodes of indegree 2 and outdegree 1. This completes the

transformation of N into N ′. Note that this transformation, which clearly

preserves the reticulation number of N , also preserves the level of N because

it does not change the number of reticulations in any nontrivial biconnected

component.

The critical observation is that if a binary tree T is displayed by N then

there is a subdivision of T in N which is also binary. This means that for

each node v in N the subdivision uses at most two outgoing edges of v and at

most one incoming edge of v. Hence the subdivision can easily be extended

to become a subdivision within N ′. �

Lemma 3. Let N be a phylogenetic network on X and T a set of binary

trees on X . Then there exists a binary phylogenetic network N ′ on X such

that (a) N ′ has the same reticulation number and level as N , (b) if N displays

all trees in T then so too does N ′, (c) if N is consistent with Tr(T ) then so

too is N ′ and (d) if N represents Cl(T ) then so too does N ′.

Proof. (a) and (b) are immediate from Lemma 2. For (c) note that for

each triplet t ∈ Tr(T ) there is some subdivision of t in N . A triplet t is
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binary, and thus so too is any subdivision of t, so we can apply the same

argument as used in Lemma 2. For (d), note that for each cluster c ∈ Cl(T )

there is some tree T on X which is displayed by N and which represents c.

T is perhaps not binary, and thus a subdivision of it in N is perhaps also not

binary, so after the transformation described in Lemma 2 this subdivision

will have become the subdivision of some binary tree T ′. However, T ′ is a

refinement of T i.e. Cl(T ) ⊆ Cl(T ′) so c is also represented by N ′. �

We will now show that each of the inequalities in (2) and (3) is strict for

some set of trees. To do so for the first inequality in each formula, consider

the set T of three trees, and the network N , shown in Figure 5. It is easy

to check that N is consistent with all the triplets in Tr(T ). However, any

network that represents Cl(T ) requires at least 3 reticulations, and will be

level-3 or higher, as can be verified by a straightforward (but technical) case

analysis or by using the program Cass [26]. Specifically: if a level-1 or level-2

network existed that represented Cl(T ) then Cass would find it [9], and it

does not.

Figure 6 shows a set T of trees for which the second inequality in (2)

and (3) is strict. A level-1 network with one reticulation is shown that repre-

sents all clusters from the three trees. However, a network with k reticulations

can display at most 2k distinct trees, so any network that displays all three

trees will require at least two reticulations. It will also have level at least 2,

because a level-1 network (which we may without loss of generality assume to

be binary) displaying all three trees would have two nontrivial biconnected

components, and thus all three trees would have a common non-singleton
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Figure 5: The triplets obtained from the three threes on the left are consistent with the

level-2 network on the right containing two reticulations. However, any network repre-

senting all the clusters from these trees will have at least three reticulations and be level-3

or higher.

cluster, but this is not so.

Although we do not present a proof, empirical experiments furthermore

suggest that it is possible to “boost” the example given in Figure 6 to create

sets of three binary trees T such that the gap between rt(T ) and rc(T ) can

be made arbitrarily large [38].

3.3. Clusters and triplets coming from two binary trees

This section presents the main results of this paper. We will show that

the number of reticulations necessary to represent the clusters from two bi-

nary trees on the same taxa is equal to the number of reticulations necessary

to represent the trees themselves. In addition, we will show that also the

number of reticulations necessary to represent all triplets from the two trees

is equal to the number of reticulations necessary to represent the trees them-
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Figure 6: The level-1 network on the right with a single reticulation represents the union of

the clusters (and triplets) obtained from the three trees on the left. However, any network

that displays all three trees will have at least two reticulations and have level at least two.

selves. Moreover, we will show that the same is true when not the number of

reticulations but the level of the networks is minimized. This means that for

data coming from two binary trees on the same set of taxa, the tree-, cluster-

and triplet problems all coincide.

Let T be a set containing two binary phylogenetic trees on the same

set of taxa. Recall that Cl(T ) is the set of all clusters from both trees in T

and Tr(T ) is the set of all triplets from both trees. We start by showing that

the minimum number of reticulations in a network consistent with Tr(T )

is equal to the minimum number of reticulations in a network displaying

both trees in T . The fact that also the number of reticulations necessary to

represent Cl(T ) is the same will be a corollary. After this corollary we will

show that the results also hold for level-minimization.

First, however, some context is necessary. As mentioned earlier, [6] fixed
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the partially correct result of [31] to prove that computation of rsc is NP-

hard. The correct part of the proof in [31], Claim 2, essentially showed that,

for a set T = {T1, T2} of two binary trees on a set X of taxa, rt(T ) ≤ ruc(M
∗)

where M∗ is the concatenation of Mat(Clus(T1)) and Mat(Clus(T2)) into a

single matrix containing 4(n−1) columns (i.e. characters) and |X | rows. By

(1) they thus also proved that that rt(T ) ≤ rsc(M
∗) and this fact is used in

[6]3. Now, observe that Clus(M∗) is equal to Cl(T ). Hence, by Observation

1, rt(T ) ≤ ruc(M
∗) = rc(T ). It is clear that rc(T ) ≤ rt(T ) and hence

rt(T ) = rc(T ). In this sense the equivalence of rt(T ) and rc(T ) for pairs of

binary trees was already implicitly present in the literature. However, given

(a) the lack of clarity in the proof of [31], (b) the fact that Observation 1 has

only been implicitly present in the literature up until now and (c) the desire

to produce a unification result which also includes triplets, we have decided

that it is useful to directly and explicitly prove this two-tree result and to

explore its consequences.

Theorem 1. If T = {T1, T2} consists of two binary phylogenetic trees on

the same set of taxa, rtr(T ) = rt(T ).

Proof. To increase the clarity of the proof we write rt(T1, T2) as shorthand

for rt({T1, T2}) and rtr(T1, T2) as shorthand for rtr({T1, T2}).

3The specific column ordering in M∗ - first the clusters from T1 in arbitrary order,

and then the clusters from T2 in arbitrary order - is important for establishing that

rt(T ) ≤ rsc(M
∗). In particular, it is easy to construct instances {T1, T2} such that a

bad permutation of the columns of M∗ causes rsc(M
∗) to be arbitrarily larger than rt(T ).
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Clearly, rt(T1, T2) ≥ rtr(T1, T2), since any phylogenetic network display-

ing T1 and T2 is consistent with all triplets from T1 and T2. It remains to

show rt(T1, T2) ≤ rtr(T1, T2).

Suppose this is not true. Let n be the number of leaves in a smallest

counter example, i.e. n is the smallest number such that there exist two

binary phylogenetic trees T1 and T2 on a set of taxa X with |X | = n such

that rt(T1, T2) > rtr(T1, T2). Clearly n ≥ 3. Let Nt be a phylogenetic network

on X with rt(T1, T2) reticulations that displays T1 and T2 and let Ntr be a

phylogenetic network on X with rtr(T1, T2) reticulations that is consistent

with all triplets in T1 and T2.

We may assume by Lemma 3 that Ntr and Nt are binary. We define a

reticulation leaf as a leaf whose parent is a reticulation and a cherry as two

leaves with a common parent.

We first prove that any binary phylogenetic network contains either a

reticulation leaf or a cherry. Suppose that this is not true and let N be a

smallest counter example, i.e. N has no reticulation leaves and no cherries

and has a minimum number of leaves over all such networks. Take any leaf x

of N and let p be its parent. It cannot be a reticulation, so p is either a

node with indegree one and outdegree two, or the root. In both cases, we

delete x and contract the remaining edge leaving p, giving a smaller counter

example. We conclude that any binary phylogenetic network contains either

a reticulation leaf or a cherry. Hence, this is also true for Ntr.

First suppose that Ntr contains a cherry. Let this cherry consist of
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leaves a, b and their common parent v. Then {a, b} is a cluster of T1 and

of T2 i.e. they both contain an edge whose set of leaf descendants is exactly

{a, b}. If this was not so, then at least one of T1 and T2 would be consis-

tent with a triplet ac|b or bc|a for some c 6∈ {a, b} and such a triplet is not

consistent with Ntr. It follows that each of T1 and T2 contains a cherry with

leaves a, b. Let T ′
1 and T ′

2 be the trees obtained from T1, T2 respectively by

deleting leaves a and b and labeling their common parent by a new label ab.

Now, Theorem 1 of Baroni et al. [39] states that, given a phylogenetic tree T

and a cluster C ∈ Cl(T ), let T |C denote the subtree of T on taxon set C and

let TC→c denote the phylogenetic tree obtained from T by replacing the sub-

tree on C by a new leaf c. Then, rt(T1, T2) = rt(T1|C, T2|C)+rt(T
C→c
1 , TC→c

2 )

whenever C ∈ Cl(T1) ∩ Cl(T2). Hence, if we take C = {a, b} we have that

rt(T
′
1, T

′
2) = rt(T1, T2), because in this case rt(T1|C, T2|C) = 0.

Furthermore, rtr(T
′
1, T

′
2) ≤ rtr(T1, T2) because deleting a and b from Ntr

and labelling v by ab leads to a phylogenetic network with rtr(T1, T2) reticu-

lations that is consistent with all triplets in T ′
1 and T ′

2. We conclude that

rt(T
′
1, T

′
2) = rt(T1, T2) > rtr(T1, T2) ≥ rtr(T

′
1, T

′
2) .

Hence, we have constructed a smaller counter example, which shows a con-

tradiction.

Now suppose that Ntr contains a reticulation leaf. Let x be such a leaf

and r its parent. Let Ntr\x be the result of removing x and r from Ntr.

Let Nt\x be the result of removing x from Nt and removing the former

parent of x as well if it is a reticulation. Let T1\x and T2\x be the trees

obtained from T1 and T2 respectively by removing x and contracting the
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remaining edge leaving the former parent of x. That is, do the following for

i ∈ {1, 2}. Let pi be the former parent of x. If pi is not the root, there is

one edge (ux
i , pi) entering pi and one edge (pi, v

x
i ) leaving pi. Remove pi and

replace the edges (ux
i , pi),(pi, v

x
i ) by a single edge (ux

i , v
x
i ). We will use the

edges (ux
i , v

x
i ) later on. If pi is the root, we remove x and pi and leave (ux

i , v
x
i )

undefined.

First observe that Ntr\x is consistent with all triplets of T1\x and T2\x.

Moreover, since Ntr\x contains one reticulation fewer than Ntr,

rtr(T1\x, T2\x) < rtr(T1, T2) < rt(T1, T2) (4)

and hence

rtr(T1\x, T2\x) ≤ rt(T1, T2) − 2 .

Now observe that Nt\x displays T1\x and T2\x. We will show that

rt(T1\x, T2\x) ≥ rt(T1, T2) − 1 . (5)

Together, (4) and (5) imply that

rtr(T1\x, T2\x) ≤ rt(T1, T2) − 2 ≤ rt(T1\x, T2\x) − 1

and hence that we have obtained a smaller counter example, which is a

contradiction.

It remains to prove (5). Let N ′ be a phylogenetic network on X \ {x}

with rt(T1\x, T2\x) reticulations that displays T1\x and T2\x. Since T1\x

is displayed by N ′, there exists a subgraph E1 of N ′ that is a subdivision

of T1\x (an embedding of T1\x into N ′). Similarly, let E2 be a subgraph
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of N ′ that is a subdivision of T2\x. We will now use the edges (ux
1 , v

x
1 ) and

(ux
2, v

x
2 ) that we introduced when defining T1\x and T2\x. For i ∈ {1, 2}, if

the edge (ux
i , v

x
i ) has been defined, we define the edge ei as follows. The edge

(ux
i , v

x
i ) corresponds to a directed path in Ei. Let ei be any edge of this path.

Notice that ei is an edge of N ′.

Let N+ be the network obtained by subdividing e1 and e2 and making x

a reticulation leaf below the new nodes. To be precise, for i ∈ {1, 2}, if ei =

(ui, vi) has been defined, replace ei by (ui, ni), (ni, vi) with ni a new node.

If (ui, vi) has not been defined, add a new root ni and an edge from ni to

the old root. Finally, add a leaf labelled x, a new reticulation r and edges

(n1, r), (n2, r) and (r, x).

Observe that N+ displays T1 and T2, because we can simply extend each

of the embeddings E1 and E2 by the new edges leading to the leaf x. More-

over, N+ contains exactly one reticulation more than N ′. Thus, rt(T1, T2) ≤

rt(T1\x, T2\x) + 1, which remained to be shown. �

Corollary 2. If T consists of two binary phylogenetic trees on the same set

of taxa,

rtr(T ) = rc(T ) = rt(T ) .

Proof. Follows from combining Theorem 1 with (2). �

Given this result it is natural to ask whether every network that represents

all the clusters (or triplets) from two binary trees T1 and T2 on the same taxon
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Figure 7: The network on the right represents the union of the clusters (and triplets)

obtained from the two trees on the left, but it does not display both trees.

set, and having a minimum number of reticulations, also displays T1 and T2.

This is not so. Consider the two trees in Figure 7. It is easy to check that

two reticulations are necessary and sufficient to display both these trees. The

network in this figure contains two reticulations and represents the union of

the clusters (and triplets) from both trees, but it does not display both trees.

We note that Theorem 1 and Corollary 2 do not hold for sets of three or

more trees, as demonstrated in Section 3.2 by Figure 6. In addition, they also

do not hold for two possibly non-binary trees, as demonstrated by Figure 84.

We say that an edge of a network N is a cut-edge if its removal discon-

nects N . A cut-edge (u, v) is trivial if v is a leaf. N is said to be simple if it

does not contain any nontrivial cut-edges.

Theorem 2. If T consists of two binary phylogenetic trees on the same set

4In some articles a non-binary tree is defined to be displayed by a network if some

binary refinement of the tree is displayed by it [40]. The definition of rt is then adjusted

accordingly. We defer this issue to a future publication.
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Figure 8: The network on the right displays the two trees on the left: at least one reticu-

lation is necessary. However, the tree on the left is sufficient to represent the union of the

clusters (or triplets) obtained from both trees.

of taxa,

ℓtr(T ) = ℓc(T ) = ℓt(T ) .

Proof. By (3), it suffices to show ℓt(T ) ≤ ℓtr(T ). We do so by induction

on |X |. The base case for |X | ≤ 2 is clear. Now consider a set of two binary

trees T on X with |X | = n. Let Nt be a network that displays both trees

in T and has optimal level ℓt(T ). Similarly, let Ntr be a network consistent

with Tr(T ) that has optimal level ℓtr(T ). By Lemma 3 we may assume that

Nt and Ntr are both binary. We distinguish three cases.

First suppose that neither Nt nor Ntr contains nontrivial cut-edges, i.e.

that Nt is a simple level-ℓt(T ) network and Ntr is a simple level-ℓtr(T ) net-

work. In that case, the number of reticulations in Nt is equal to ℓt(T )

(because Nt only contains a single nontrivial biconnected component). So,

rt(T ) ≤ ℓt(T ). At the same time, rt(T ) ≥ ℓt(T ), since the number of retic-

ulations in any network is at least equal to its level. Thus, rt(T ) = ℓt(T ).

Similarly, rtr(T ) = ℓtr(T ). Moreover, by Theorem 1, rtr(T ) = rt(T ) and we
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can conclude that ℓtr(T ) = rtr(T ) = rt(T ) = ℓt(T ).

Now suppose that Nt contains at least one nontrivial cut-edge and let e be

such an edge. Let C be the set of taxa reachable from e by a directed path.

Let T |C be the set of trees obtained by restricting each of the trees in T to

the taxa in C and let T C→c denote the set of trees obtained by collapsing,

in each tree in T , the subtree on C to a single leaf labelled c. We claim that

ℓt(T ) ≤ max{ℓt(T |C), ℓt(T
C→c)}

= max{ℓtr(T |C), ℓtr(T
C→c)}

≤ ℓtr(T ) .

To see that ℓt(T ) ≤ max{ℓt(T |C), ℓt(T
C→c)}, notice that any network

displaying T C→c can be combined with any network displaying T |C in or-

der to obtain a network displaying T . This can be done by replacing the

leaf c of the network displaying T C→c by the network displaying T |C. The

network obtained in this way displays T and its level is equal to the maxi-

mum of the levels of the networks displaying T C→c and T |C. So, ℓt(T ) ≤

max{ℓt(T |C), ℓt(T
C→c)}. Then we use that ℓt(T |C) = ℓtr(T |C) and ℓt(T

C→c) =

ℓtr(T
C→c), which itself follows by combining the induction hypothesis with

the fact that ℓt(T |C) ≥ ℓtr(T |C) and ℓt(T
C→c) ≥ ℓtr(T

C→c). To prove the

last inequality, observe that ℓtr(T |C) ≤ ℓtr(T ) because removing leaves can

not increase the level. In addition, ℓtr(T
C→c) ≤ ℓtr(T ) because T C→c can be

constructed by removing all leaves in C except for one, which is relabeled c,

and removing or relabeling leaves can not increase the level.
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The final case is that Ntr contains a nontrivial cut-edge e. Let C be the

set of taxa that can be reached from e by a directed path in Ntr. Clearly,

for x, y ∈ C and z /∈ C, xy|z ∈ Tr(T ). Thus, C is a cluster of each of the

trees of T . Therefore, we can argue in the same way as in the previous case

that ℓt(T ) ≤ ℓtr(T ). �

4. Complexity Consequences

Theorem 1 and Corollary 2 allow us to elegantly settle several complexity

questions in the phylogenetic network literature that have been open for some

time, and to significantly strengthen some already existing hardness results.

Corollary 3. Computing rc(T ) and computing rtr(T ) are both NP-hard and

APX-hard, even for sets T consisting of two binary trees on the same set of

taxa.

Proof. Follows from Corollary 2 and the fact that computing rt(T ), for

sets T consisting of two binary trees on the same set of taxa, is NP-hard and

APX-hard [6]. �

It follows directly that the following two problems are NP-hard and APX-

hard.
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MinRetClusters

Instance: A set X of taxa and a set C of clusters on X .

Objective: Construct a phylogenetic network on X that represents each clus-

ter in C and has a minimum number of reticulations over all such

networks.

MinRetTriplets

Instance: A set X of taxa and a set R of triplets on X .

Objective: Construct a phylogenetic network on X that is consistent with

each triplet in C and has a minimum number of reticulations over

all such networks.

Moreover, the latter problem is even NP-hard and APX-hard for dense

sets of triplets. This strengthens a result by Jansson et al. [16], who showed

that MinRetTriplets and MinLevTriplets are NP-hard, by construct-

ing a non-dense set of triplets such that positive instances of the NP-complete

problem Set Splitting corresponded to a level-1 network with exactly

one reticulation. Corollary 3 extends this result by showing that MinRet-

Triplets is even NP-hard for dense sets of triplets and that it is hard to

approximate (APX-hard).

We now turn our attention to the problems that minimize level.

Theorem 3. Computing ℓt(T ) is NP-hard and APX-hard, even for sets T

consisting of two binary trees on the same set of taxa.

Proof. We again reduce from the problem of computing rt(T ), for sets T
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consisting of two binary trees on the same set of taxa. We first reduce this

problem to the restriction to pairs of trees T1, T2 that do not have a common

non-singleton cluster. Call this restricted problem ResMinRetTrees.

Consider a set T consisting of two binary phylogenetic trees T1, T2 on a

set X of taxa. Recall Theorem 1 of Baroni et al. [39] and the application

of it described in the proof of Theorem 1 in this article. To summarise,

rt(T1, T2) = rt(T1|C, T2|C) + rt(T
C→c
1 , TC→c

2 ) whenever C ∈ Cl(T1) ∩ Cl(T2).

Thus, repeatedly applying the Baroni theorem, we obtain in polynomial time

a collection of at most polynomially-many instances of ResMinRetTrees

such that the minimum reticulation number of the original instance is equal

to the sum of the minimum reticulation numbers of the obtained instances

of ResMinRetTrees. Thus, we can solve the original instance by solving

each instance of ResMinRetTrees. This completes the reduction.

We continue by reducing ResMinRetTrees to the problem of com-

puting ℓt(T ). Consider an instance (X , T1, T2) of ResMinRetTrees. Let

T = {T1, T2}. We will prove that ℓt(T ) = rt(T ) and this will complete the

reduction. Clearly ℓt(T ) ≤ rt(T ). Suppose then for the sake of contradiction

that ℓt(T ) < rt(T ). If that is the case, then any level-ℓt(T ) network that

displays T1 and T2 contains at least two nontrivial biconnected components.

By Lemma 3, there exists a binary such phylogenetic network N . Since this

network contains at least two nontrivial biconnected components, it contains

a cut-edge e = (u, v) such that at least two taxa are reachable from v (by

a directed path) and at least one taxon is not. Define cluster E to contain

all taxa that are reachable from v in N . Thus, |E| ≥ 2. T1 and T2 are both
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displayed by N so, for i ∈ {1, 2}, there is a subdivision of Ti in N . Fix any

such subdivision. So, each edge of Ti maps to a directed path of one or more

edges in N . Both subdivisions must pass through (u, v) and it thus follows

that E is a non-singleton cluster of both T1 and T2, giving us a contradiction.

This completes the NP-hardness proof.

To see that computing ℓt(T ) is not only NP-hard but also APX-hard,

observe that ResMinRetTrees is APX-hard because (as shown above)

rt(T ) can be computed by simply adding up the optima of polynomially-

many instances of ResMinRetTrees. This additivity means that an ǫ-

approximation to ResMinRetTrees yields an ǫ-approximation for the prob-

lem of computing rt(T ). Combining this with the optimality-preserving re-

duction from ResMinRetTrees to the problem of computing ℓt(T ) de-

scribed above gives the desired result. �

It follows directly that the following problem is NP-hard and APX-hard.

MinLevTrees

Instance: A set X of taxa and a set T of phylogenetic trees on X .

Objective: Construct a level-k phylogenetic network on X that displays each

tree in T and such that k is as small as possible.

Corollary 4. Computing ℓc(T ) and computing ℓtr(T ) are both NP-hard and

APX-hard, even for sets T consisting of two binary trees on the same set of

taxa.

Proof. Follows from Theorem 2 and Theorem 3. �
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Thus, also the following two problems are NP-hard and APX-hard.

MinLevClusters

Instance: A set X of taxa and a set C of clusters on X .

Objective: Construct a level-k phylogenetic network on X that represents

each cluster in C and such that k is as small as possible.

MinLevTriplets

Instance: A set X of taxa and a set R of triplets on X .

Objective: Construct a level-k phylogenetic network on X that is consistent

with each triplet in R and such that k is as small as possible.

Moreover, the latter problem is even NP-hard and APX-hard for dense

sets of triplets.

5. Concluding Remarks

In this article, we have proven an important unification result that shows

that when computing the minimum number of reticulations (or minimum

level) required to represent data obtained from two binary trees on the same

taxon set, it does not matter whether one calculates this using trees, triplets

or clusters. In the process of proving this, we have clarified a number of

confusing issues in the literature.

The unification result has the interesting practical consequence that the

two-tree case thus forms an interesting benchmark for comparing the perfor-

mance of different phylogenetic network software. It was already empirically
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observed in [9], for example, that for a specific two-tree data set the indepen-

dently developed programs Cass (which takes clusters as input, and attempts

to minimise level), PIRN (which takes trees as input, and attempts to min-

imise the reticulation number) and HybridInterleave (which takes two

binary trees as input, and minimises the reticulation number) all returned

the same optimum. The intriguing possibility thus exists of creating hybrid

software for the two-tree problem by combining the best parts of several

existing software packages. It should be noted, however, that the networks

achieving these optima are not always transferrable. For example, a network

obtaining the minimum number of reticulations under the cluster model does

not automatically display both the trees.

It is also interesting to view our results next to other two-tree findings in

the literature. Phillips and Warnow [41] showed that, given a set of clusters

coming from two trees, it is polynomial-time solvable to find a phylogenetic

tree consistent with a maximum number of clusters, while this problem is

NP-hard for three or more trees. Another interesting two-tree result was

discovered by Bordewich, Semple and Spillner [42]. They found a polynomial-

time algorithm for finding an optimal set of taxa that maximizes the weighted

sum of the phylogenetic diversity across two phylogenetic trees, while also

this problem is NP-hard for three or more trees. It would be interesting

to try and identify general families of objective functions (i.e. optimization

criteria) for which the two-tree case is special.

On the other hand, we have shown that the tree, triplet and cluster models

already start to diverge for three binary trees on the same set of taxa. A
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natural follow-up question is thus: can we predict under what circumstances

the models significantly differ, and what does it say about our choice of

model if sometimes one model requires significantly more reticulations, or

higher level, than another? The “triplet ≤ cluster ≤ trees” inequality from

Section 3.2 suggests that in appropriate combinations existing software for

triplets, clusters and trees could be used to develop lower and upper bounds

for each other, but under what circumstances are these bounds strong?
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